

International conference

6-9 JUNE 2023 Espace Prouvé, Nancy, France

Dose-response relationship between hand-arm vibration exposure and musculoskeletal disorders of upper extremities: a case-control study among German workers

Yi Sun¹, Frank Bochmann¹, Winfried Eckert², Benjamin Ernst¹, Uwe Kaulbars¹ Uwe Nigmann³, Nastaran Raffler¹, Christina Samel¹, Christian van den Berg⁴

¹IFA-DGUV, Sankt Augustin, Germany ²BG Bau, Stuttgart, Germany ³BGHM, Düsseldorf, Germany ⁴BGRCI, Bochum, Germany

Background

- Hand arm vibration syndrome (HAVS): vascular, neurological and musculoskeletal disorders
- Vibration-induced musculoskeletal disorders legal occupational disease (BK 2103) in Germany since 1929.
- Approximately 1.5 2 million employees in Germany have significant exposure to hand-arm vibration.
- BK 2103: about 350 suspected and 100 recognized cases per year.
- Limited knowledge of the exposure-response relationship for vibration-induced musculoskeletal disorders.

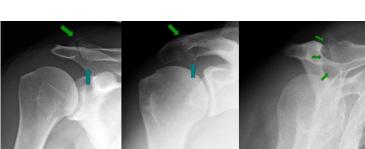
Design of an epidemiological case-control study

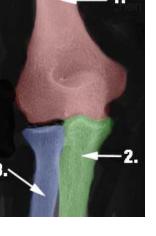
Objective:

Quantitative assessment of exposure-response relationship between work-related hand-arm-vibration and musculoskeletal disorders (defined according to BK 2103)

Study design: Industry-based case-control-study.

Base population:


All blue-collar workers in the German construction, wood, metal and mining industries


Cases

Incident male cases of musculoskeletal disorders defined according to BK 2103:

- Hand osteoarthritis
- Elbow osteoarthritis
- Shoulder osteoarthritis
- Kienbock's disease
- Stress fracture and pseudoarthrosis of the scaphoid
- Osteochondritis dissecans of elbow

Controls

A random sample of male cases of compensable occupational injuries (matching ratio 1:3)

UNE 2023

NAI

Matching criterion:

- Birth year
- Gender
- Industrial sector

JA

Exposure assessment methods

- Reconstruction of Individual work history by personal interviews (by experienced labour inspectators of the German Social Accident Insurance).
- Identification of all relevant work machines used in various segments of the work history (duration, frequency)
- Establishment of a "Machine-Vibration Database" based on standardized industrial hygiene measurements
- Quantification of daily and lifetime vibration dose by combing the machines used and the "Machine-Vibration Database"

Quantification of hand-arm-vibration

Vibration values assessed

 $a_{hv} = \sqrt{a_{hwx}^2 + a_{hwy}^2 + a_{hwz}^2}$ and $a_{hw(x,y,z)}$

 $A(8) = \sqrt{\frac{1}{T_0} \sum_{i=1}^n (a_{hvi}^2 \cdot T_i)} \qquad T_i: \text{ working hours with ith machine}$

NANCY

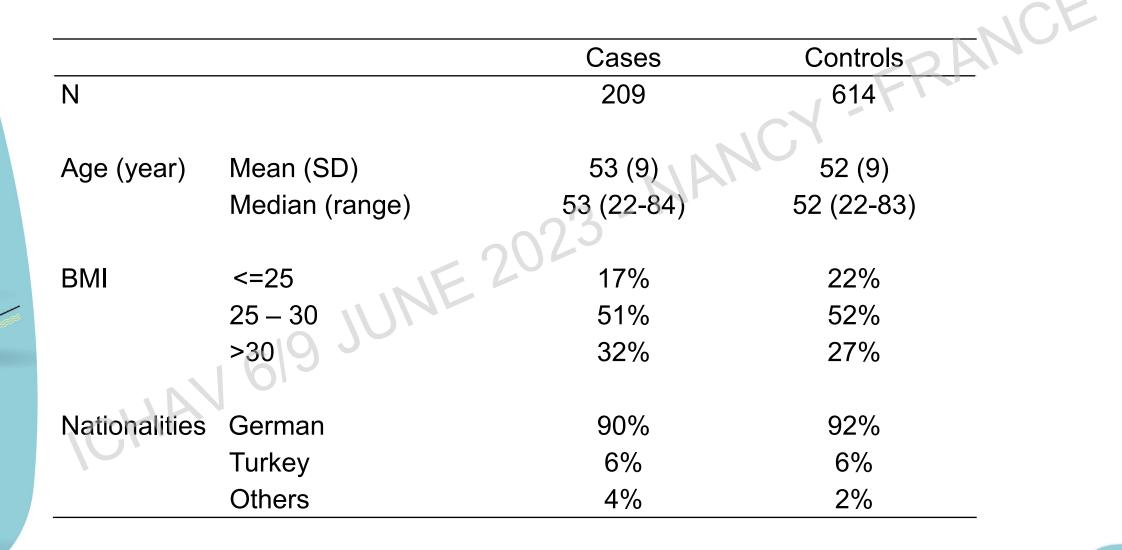
 Long-term cumulative vibration dose $D_{hv} = \sum_{i,j=1}^{n,k} A(8)^2 \cdot d_i \cdot a_j$ d_i: working days per year

a_i: total working years

FRANCE

Statistical Analysis

- Descriptive/inductive statistic
- Multivariate conditional logistic regression analysis


Confounders considered in the analysis

- Age and sex (by matching)
- Injuries of hand, elbow and shoulder joints
- Inflammatory disorders of hand, elbow and shoulder joints
- Generalized osteoarthritis and other comorbidities

=RANC

Description of the study sample

HAND-ARM VIBRATION 6-9 JUNE 2023

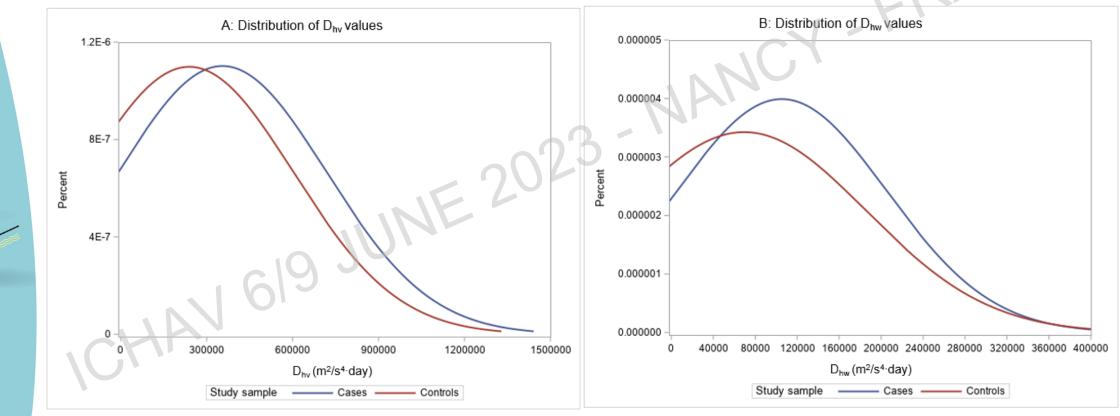
Comorbidity

J.A.

Comorbidity	Cases (n=209)	Controls (n=397)
Gout*	14%	9%
Hand injuries***	40%	26%
Elbow injuries**	12%	6%
Shoulder injuries*	14%	9%
Arm fracture	10%	7%
Inflammatory disorders of wrists***	26%	6%
Inflammatory disorders of Elbow***	24%	6%
Inflammatory disorders of shoulder***	17%	9%
Osteoporosis	2%	2%
Knee osteoarthritis***	29%	15%
Hip osteoarthritis***	10%	4%
Spinal OA***	19%	9%
Rheumatism	6%	4%

Chi-squared test *p<0.05; **p<0.01 ***p<0.001

HAND-ARM VIBRATION 6-9 JUNE 2023


, CF

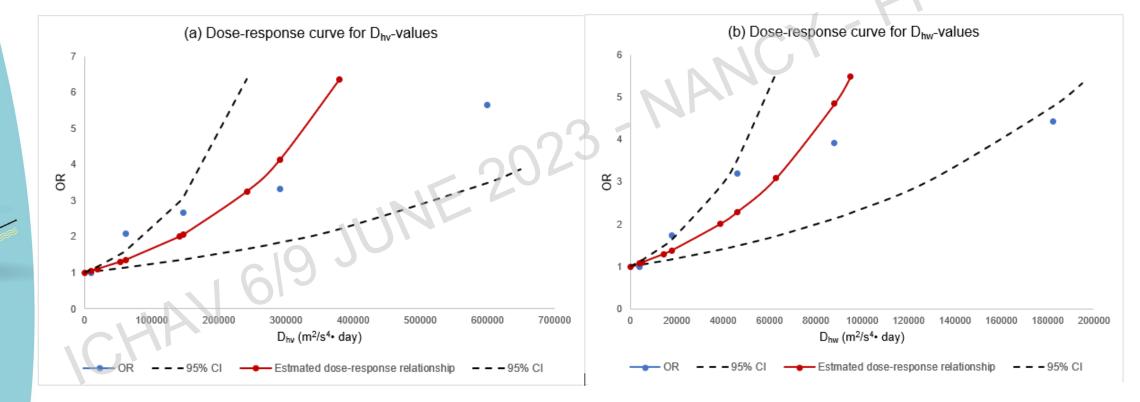
Occupational exposure to hand-arm-vibration

Y X

		Cases (n=209)	Controls (n=614)				
Employment	t duration (years)						
	Mean (SD)	25 (9)	24 (11)				
	Median (range)	26 (1-44)	25 (0.5-49)				
		03-14					
Daily vibration	on exposure	0.45					
A(8) (m/s ²)	n	1863	3252				
	Mean (SD)	8.9 (5.5)	7.2 (5.0)				
	Median (range)	8.4 (0.2-29.4)	6.5 (0.3-34.4)				
Cumulative e	Cumulative exposure doses						
D _{hv} (m ² /s ⁴ •d	D _{hv} (m²/s ⁴ •day)						
	Mean (SD)	355,093 (361,991)	239,227 (363,068)				
	Median (range)	241,152 (976-2,114,916)	121,995 (23-3,374,370)				
			HAND-ARM VIBRATION 6-9 JUNE 2023				

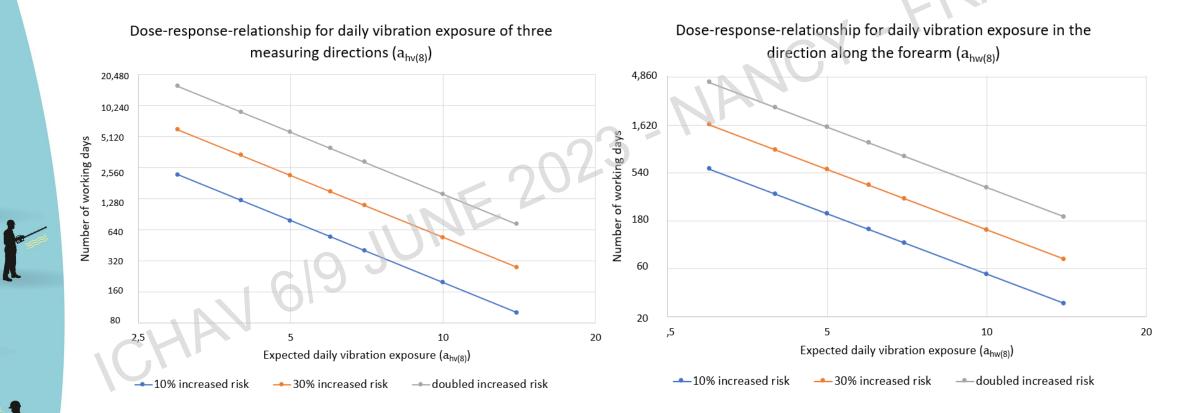
Distribution of cumulative vibration doses

ANCE


Quantification of dose-response relationship

		Cases/N	Unadjusted		Adjusted	
			OR	95%Cl	OR	95%CI
	D_{hv} (m ² /s ⁴ •day)					
	1. Quintile	20/165	1	-	1	_
	2. Quintile	35/164	2.14	1.17 – 3.90	2.08	1.12 – 3.85
	3. Quintile	46/165	3.10	1.72 – 5.59	2.66	1.45 – 4.88
	4. Quintile	40/164	2.77	1.52 – 5.06	3.31	1.78 – 6.13
	5. Quintile	68/165	5.03	2.83 – 8.93	5.65	3.06 – 10.42
	Trend-test		P<0.0001		P<0.001	
	100 m²/s⁴ ∙ye	ar increase	1.015	1.008–1.023	1.013	1.006–1.021
d p	D _{hw} (m ² /s ⁴ •day)					
	1. Quintile	16/165	1	_	1	_
	2. Quintile	27/164	1.93	1.02-3.67	1.73	0.89 – 3.33
	3. Quintile	44/165	3.57	1.92-6.62	3.19	1.70 – 6.01
	4. Quintile	58/164	4.91	2.68-8.99	3.92	2.10 – 7.32
	5. Quintile	64/165	5.08	2.80-9.22	4.43	2.39 – 8.21
	Trend-test		P<0.0001		P<0.0001	
	100 m ² /s ⁴ •year increase		1.036	1.015–1.058	1.028	1.006–1.050

J.


Estimated exposure-response-curve for D_{hv} and D_{hw}

14

Expected 10%, 30% and doubled increased risk of musculoskeletal disorders

Summary

- One of the largest epidemiological studies on hand-arm-vibration (n=823) with higher methodological quality
- Object exposure assessment based on standardized industrial hygiene measurement database.
- Quantification of the exposure-response relationship between handarm-vibration and musculoskeletal disorders of the hand-armshoulder system
- The findings of this study provide useful guidelines in the prevention and compensation of work-related and vibration-induced musculoskeletal disorders of the upper limbs

Thank you very much for your attention!

FRANCE